

Application News

No. AD-0209

Pharmaceuticals / HS-20 GC-2030

Analysis of Residual Solvents in Pharmaceutical Products by Headspace-GC-FID with Nitrogen Carrier Gas Following USP<467> - Procedure A

Elgin Ting and Cynthia Lahey Application Development & Support Centre, Shimadzu (Asia Pacific), Singapore

Introduction

Various organic solvents are used in the manufacturing process in pharmaceuticals. Residues of the organic solvents in drug active ingredients or final products are monitored as a critical quality control procedure [1]. According to USP<467> monograph, usage of Class 1 solvents must be avoided, while usage of Class 2 solvents is to be limited [2]. A headspace (HS) - gas chromatography (GC) method with helium as carrier gas was set up for analysis of residual solvents in pharmaceuticals following USP <467> [3]. Helium is a popular choice of GC carrier gas for its efficiency but its supply is depleting and it has become more expensive. Nitrogen is a less expensive gas, and it is allowed to be used as GC carrier gas in USP<467>. Here, we describe HS-GC method using nitrogen to replace helium as the carrier gas to analyse Class 1 and Class 2 solvents following USP<467> Procedure A criteria.

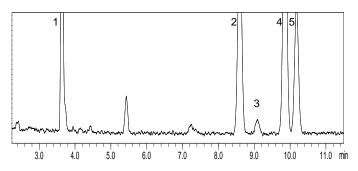
Experimental

Analytical conditions and sample preparation

HS-20 headspace autosampler paired with Nexis GC-2030 (Shimadzu Corporation, Japan) were used in this work. The analytical conditions following Procedure A under water-soluble article section in USP<467> are shown in Table 1. Certified USP<467> Class 1 and 2 Standard solutions were purchased from Restek. The standards were prepared according to USP<467> Procedure A before analysis.

Results and Discussion

Class 1 Standard


Class 1 Standard (five solvents) was analysed for 7 times to determine the peak area percentage relative standard deviation (%RSD) and signal to noise ratio (S/N). The S/N ratios were calculated using USP method (Table 2). The chromatogram of Class 1 Standard is displayed in Figure 1.

The lowest S/N value for 1,1,1-trichloroethane (peak 2) obtained is 97, which is much greater than the

Table 1: HS-GC analytical conditions for residual solventanalysis following USP <467>

Instruments and Column information						
GC-FID	Nexis GC-2030					
Auto Injector	HS-20					
Column	SH-Rxi-624Sil MS					
Coldinii	30m x 0.32mm ID x 1.8µm df					
HS parameter						
Oven Temperature	80°C					
Sample Line Temperature	110°C					
Transfer Line Temperature	120°C					
Injection Time	1 min					
Pressurizing Gas Pressure	75 kPa					
Equilibrating Time	60 min					
Shaking Level	2					
GC-F	ID parameter					
Injection Mode	Split mode					
	Split ratio 5					
Carrier Gas	Nitrogen					
Gas Flow Condition	Constant linear velocity mode Linear velocity 35cm/s					
Oven Temperature	40°C (20min)					
Programming	→10°C/min to 240°C (20min)					
Detector Temperature	250°C					
Hydrogen Flow	32 mL/min					
Synthetic Air Flow	200 mL/min					
Make-up Gas Flow	24 mL/min					

requirement stated in USP<467> (i.e., S/N ratio is not less than 5). Carbon tetrachloride (peak 3), which sensitivity is the lowest among the Class 1 solvents,

Figure 1: HS-GC-FID chromatogram of Class 1 Standard following Procedure A in USP<467>. Peak labelling refers Table 1.

Peak No.	Solvent	%RSD (n=7) of peak area	S/N ratio data 1	S/N ratio data 2	S/N ratio data 3	S/N ratio data 4	S/N ratio data 5	S/N ratio data 6	S/N ratio data 7
1	1,1-Dichloroethene	7.2	78	86	94	80	117	100	101
2	1,1,1-Trichloroethane	5.5	126	97	106	98	104	121	114
3	Carbon tetrachloride	6.2	10	7	7	8	8	11	10
4	Benzene	4.4	180	138	142	178	134	179	171
5	1,2-Dichloroethane	2.9	65	67	62	63	73	80	75

Table 2: Peak area repeatability (n=7) and signal to noise ratio (S/N) for Class 1 Standard

had S/N ratio values of 7 or greater. The repeatability of peak areas, %RSD (n=7), for the five solvents obtained ranges from 2.9% to 7.2%. These results indicate that Class 1 Standard can be analysed using nitrogen carrier gas to replace He in GC-FID analysis, achieving sensitivity stated in the USP<467> Procedure A.

Class 2 Standard

Class 2 Standard has two groups, Class 2A and Class 2B. The chromatograms are shown in Figures 2 and 3, respectively. The repeatability results of Class 2A and Class 2B are compiled into Table 3. The peak area $\$ RSD (n=7) values obtained for all the solvents are below 4%.

One concern with using nitrogen as carrier gas is possible loss in peak resolution (R_s) when using same linear velocity as helium. As demonstrated in Figure 4, the specific resolution between acetonitrile and methylene chloride obtained with nitrogen carrier gas ($R_s = 2.3$) is almost the same as that using helium carrier gas ($R_s = 2.4$). This meets the stated criteria of USP<467> that R_s of these 2 compounds must not be less than 1.

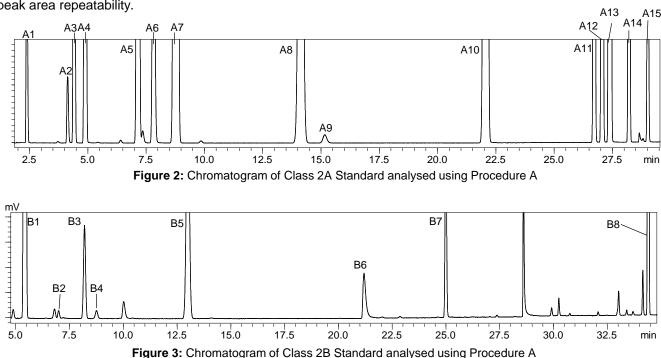

In summary, the results above indicate that the HS-GC analysis method with nitrogen as carrier gas can achieve required sensitivity (S/N) and peak resolution stated in the criteria of USP<467> Procedure A. Moreover, this method has also demonstrated good peak area repeatability.

 Table 3: Peak area repeatability (n=7) for Class 2A and 2B Standards

Class 2A standard						
No.	Compound	%RSD (n=7) of peak area				
A1	Methanol	1.3				
A2	Acetonitrile	2.2				
A3	Methylene chloride	2.9				
A4	Trans-1,2-Dichlorethene	1.5				
A5	Cis-1,2-Dichloroethene	1.8				
A6	Tetrahydrofuran	2.4				
A7	Cyclohexane	1.6				
A8	Methylcyclohexane	3.1				
A9	1,4-Dioxane	2.9				
A10	Toluene	1.8				
A11	Chlorobenzene	1.9				
A12	Ethylbenzene	1.7				
A13	m-xylene and p-xylene	1.6				
A14	o-xylene	1.8				
A15	Cumene	1.6				
Class 2B standard						
No.	Compound	%RSD (n=7) of peak area				
B1	Hexane	2.3				
B2	Nitromethane	1.3				
B3	Chloroform	1.3				
B4	1,2-Dimethoxyethane	3.6				
B5	Trichloroethene	1.8				
B6	Pyridine	1.8				
B7	Methylbutylketone	1.6				

Tetralin

1.2

B8

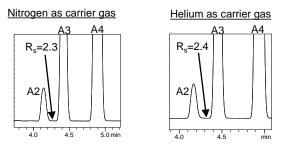


Figure 4: Comparison of resolution between acetonitrile peak (A2) and methylene chloride peak (A3) using nitrogen and helium as carrier gases

Conclusions

This study demonstrates the feasibility of using nitrogen as carrier gas in HS-GC-FID analysis of residual solvents in pharmaceuticals. The results using Class 1 and Class 2 standards fulfil the criteria stated in USP<467> Procedure A from water-soluble article section.

References

- 1. Grodowska, K., Parczewski, A., *Acta Pol Pharm.* 67(1):3-12(2010)
- 2. The United States Pharmacopeia, USP <467> RESIDUAL SOLVENTS.
- Shimadzu Application News 290, Analysis of Residual Solvents in drug products using Nexis GC-2030 combined with HS-20 headspace sampler - USP <467> Residual Solvents Procedure A

SHIMADZU (Asia Pacific) Pte. Ltd 79 Science Park Drive, #02-01/08 Cintech IV, Singapore 118264, www.shimadzu.com.sg; Tel: +65-6778 6280 Fax: +65-6778 2050 For Research Use Only. Not for use in diagnostic purposes. Contents and/or instrumentations in this application may not available in some countries under each regulation. Please contact the local representatives in details.

Copyright © 2019 SHIMADZU (Asia Pacific) Pte. Ltd. All rights reserved. No part of this document may be reproduced in any form or by any means without permission in writing from SHIMADZU (Asia Pacific) Pte. Ltd.