

No. AD-0228

Pharmaceuticals / HS-20 GC-2030

Analysis of Residual Solvents in Pharmaceutical Products by Headspace-GC-FID with Nitrogen Carrier Gas Following USP<467> - Procedure B

□ Introduction

USP <467> monograph describes Procedure A and B for analysing residual solvents in pharmaceutical products by Headspace Gas Chromatography (HS-GC) [1]. Procedure A is the main method, while Procedure B is to be carried out as verification when certain criteria is not met in Procedure A result. In Application News AD-0209, analysis of residual solvents in pharmaceutical products was done following Procedure A which was performed using nitrogen carrier gas, an inexpensive and abundant alternative to helium [2]. Here, we describe HS-GC method using nitrogen as the carrier gas to analyse Class 1 and Class 2 solvents following USP<467> Procedure B criteria.

Experimental

Analytical conditions and sample preparation

HS-20 headspace autosampler and Nexis GC-2030 (Shimadzu Corporation, Japan) were used in this work. The analytical conditions following Procedure B under water-soluble article section in USP<467> are shown in Table 1. Certified USP<467> Class 1 and 2 Standard solutions were purchased from Restek. The standards were prepared according to USP<467> Procedure B before analysis.

Results and Discussion

Class 1 Standard

Class 1 Standard (five solvents) was analysed for 7 times to determine the peak area percentage relative standard deviation (%RSD) and signal to noise ratio (S/N). The S/N ratios were calculated using USP method (Table 2). The chromatogram of Class 1 Standard is displayed in Figure 1. Carbon tetrachloride was co-eluted with 1,1,1-Trichloroethane when Procedure B was used (Figure 1).

The lowest S/N value for benzene (Peak 4) obtained was 93, which is greater than the requirement stated in USP<467> (i.e., S/N ratio is not less than 5). The S/N ratio for the rest of the Class 1 Standards were greater than 3 which conformed to the requirement stated in USP<467>.

The repeatability of peak areas, %RSD (n=7), for the five solvents (2 solvents co-elute) obtained ranges

Table 1:	HS-GC	analytical	conditions	for	residual	solvent
analysis f	ollowing	USP <467:	>			

Instruments and Column information					
GC-FID	Nexis GC-2030				
Auto Injector	HS-20				
Column	SH-Stabilwax 30 m x 0.32 mm ID x 0.25 µm df				
HS parameter					
Oven Temperature	80 °C				
Sample Line Temperature	110 °C				
Transfer Line Temperature	120 °C				
Injection Time	1 min				
Pressurizing Gas Pressure	75 kPa				
Equilibrating Time	60 min				
Shaking Level	2				
GC-FID parameter					
Injection Mode	Split mode Split ratio 10				
Carrier Gas	Nitrogen				
Gas Flow Condition	Constant linear velocity mode Linear velocity 35 cm/s				
Oven Temperature Programming	50 °C (20 min) →6 °C/min to 165 °C (20 min)				
Detector Temperature	250°C				
Hydrogen Flow	32 mL/min				
Synthetic Air Flow	200 mL/min				
Make-up Gas Flow	24 mL/min				

from 1.8% to 5.1%. These results indicate that when using nitrogen carrier gas as a substitute of helium carrier gas, Procedure B criteria can still be fulfilled for Class 1 Standard.

Figure 1: HS-GC-FID chromatogram of Class 1 Standard following Procedure B in USP<467>. Peak labelling refers to Table 2.

Peak No.	Solvent	%RSD (n=7) of peak area	S/N ratio data 1	S/N ratio data 2	S/N ratio data 3	S/N ratio data 4	S/N ratio data 5	S/N ratio data 6	S/N ratio data 7
1	1,1-dichloroethene	5.1	23	54	36	37	32	32	79
2&3	1,1,1-trichloroethane and Carbon Tetrachloride	2.2	38	86	70	84	56	65	86
4	Benzene	1.8	119	127	108	138	93	107	104
5	1,2-dichloroethane	2.1	40	48	46	60	50	58	40

 Table 2: Peak area repeatability (n=7) and signal to noise ratio (S/N) for Class 1 Standard

Class 2 Standard

Class 2 Standard consists of two groups, Class 2A and Class 2B. The chromatograms are shown in Figures 2 and 3, respectively. The repeatability results of Class 2A and Class 2B are compiled into Table 3. The peak area %RSD (n=7) values obtained for all the solvents ranges from 0.7% to 9.1%.

The average (n=7) specific resolution between cis-1,2dichloroethene and acetonitrile obtained with nitrogen carrier gas was 2.9. This meets the requirement of USP<467> that R_s of these 2 compounds must not be less than 1.

In summary, the results for Class 1 Standard and Class 2 Standard indicate that the HS-GC analysis method with nitrogen as carrier gas can achieve required sensitivity (S/N) and peak resolution as stated in the criteria of USP<467> Procedure B.

Α7

u\ 5000

2500

A8

R_s= 2.9

2B Stan	dards					
	Class 2A standard					
No.	Compound %RSD (n=7) peak area					
A1	Cyclohexane	5.7				
A2	Methylcyclohexane	5.7				
A3 & A4	trans-1,2-Dichloroethene and THF	4.7				
A5	Methanol	1.3				
A6	DCM	5.7				
A7	Cis-1,2-Dichloroethene	5.8				
A8	Acetonitrile	2.2				
A9	Toluene	5.6				
A10	1,4-Dioxane	1.6				
A11	EthylBenzene	5.5				
A12	p-xylene	5.7				
A13	m-xylene	5.6				
A14	Cumene	5.5				
A15	o-xylene	5.4				
A16	Chlorobenzene	5.6				
<u> </u>	Class 2B standard					

Table 3: Peak area repeatability (n=7) for Class 2A and

Class 2B standard				
No.	Compound	%RSD (n=7) of peak area		
B1	Hexane	9.1		
B2	1,2-dimethoxyethane	1.1		
B3	Trichloroethene	7.1		
B4	chloroform	5.1		
B5	Methylbutyylketone	0.7		
B6	Nitromethane	4.6		
B7	Pyridine	1.1		
B8	Tetralin	4.2		

Conclusions

This study demonstrates the feasibility of using nitrogen as carrier gas in HS-GC-FID analysis of residual solvents in pharmaceuticals. The results of Class 1 and Class 2 standards fulfilled the criteria stated in USP<467> Procedure B from water-soluble article section.

References

- 1. The United States Pharmacopeia, USP <467> RESIDUAL SOLVENTS.
- Shimadzu Application News AD-0209, Analysis of Residual Solvents in Pharmaceutical Products by Headspace-GC-FID with Nitrogen Carrier Gas Following USP<467> -Procedure A

SHIMADZU (Asia Pacific) Pte. Ltd 79 Science Park Drive, #02-01/08 Cintech IV, Singapore 118264, www.shimadzu.com.sg; Tel: +65-6778 6280 Fax: +65-6778 2050 For Research Use Only. Not for use in diagnostic purposes. Contents and/or instrumentations in this application may not available in some countries under each regulation. Please contact the local representatives in details.

Copyright © 2020 SHIMADZU (Asia Pacific) Pte. Ltd. All rights reserved. No part of this document may be reproduced in any form or by any means without permission in writing from SHIMADZU (Asia Pacific) Pte. Ltd.