

Application News

GC HS-20 NX/Nexis[™] GC-2030

Analysis of Residual Solvents in Pharmaceuticals by Water-Soluble Samples Using H₂ Carrier (USP 467)

Y. Mikota, E. Kobayashi, A. Miyamoto

User Benefits

- The use of H₂ as a carrier gas, which is inexpensive and easy to obtain, contributes to cost reduction in the laboratory.
- H_2 carrier gas is used to achieve the accuracy required by the USP.
- A hydrogen sensor ensures H_2 carrier gas can be used safely.
- Using a state-of-the-art HS-20 NX headspace sampler enables reliable measurement of residual solvents in pharmaceuticals.

Introduction

Test methods for residual solvents in pharmaceuticals are specified in the USP (United States Pharmacopeia) General Chapter <467> Residual Solvents, which mainly specifies using the headspace GC method. Residual solvents in pharmaceuticals are classified into Classes 1 to 3 based on potential risks to human health and strictly controlled accordingly. Sensitive analysis is required. The carrier gas generally used for analysis is He, but the depletion of He has become a problem recently. Consequently, there is a need for using an alternative carrier gas such as H₂ for analysis. Any method changes, such as substituting He with an alternate carrier gas, must be validated according to USP Chapter <1467> Residual Solvents—Verification of Compendial Procedures and Validation of Alternative Procedures.

This paper presents the results of using H₂ as a carrier gas with an HS-20 NX headspace sampler to analyze Class 1 and 2 water-soluble samples in accordance with USP General Chapter <467> Residual Solvents.

* Analytical samples were prepared using a different procedure from the USP to confirm the performance of the apparatus.

Instrument Configuration and Analysis Conditions

A Nexis GC -2030 gas chromatograph and Shimadzu HS-20 NX headspace gas sampler were connected to measure the listed Class 1 and Class 2 standard solutions according to USP General Chapter <467> Residual Solvents, Procedure A. The analytical conditions for GC and HS are indicated in Table 1.

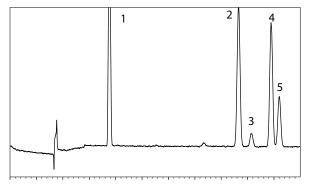

Table 1 Water-Soluble Sam	ple Analysis Conditions

Table Twater-	Table T water-Soluble Sample Analysis Conditions				
GC Analysis Conditions (Procedure A)					
Model:	Nexis GC-2030				
Detector:	FID-2030 flame ionization detector				
Column:	SH-I-624Sil MS				
Column Temp.:	(0.32 mm l.D.×30 m, d.f.= 1.8 μm) ^{*1} 40 °C (20 min) – 10 °C/min – 240 °C (20 min) Total 60 min				
Injection Mode:	Split 1:5				
Carrier Gas Controller:	Constant linear velocity mode (H ₂ and He)				
Linear Velocity:	35 cm/sec				
Detector temp.:	250 ℃				
FID H ₂ Flowrate:	32 mL/min				
FID Make-up Flowrate:	24 mL/min (N ₂)				
FID Air Flowrate:	200 mL/min				
HS Analysis Conditions (Procedure A)					
Oven Temperature:	80 °C				
Sample Line Temp.:	110 °C				
Transfer Line Temp.:	120 °C				
Vial Stirring:	Off				
Vial Volume:	20 mL				
Vial Heat-Retention Time:	45 min				
Vial Pressurization Time:	1 min				
Vial Pressure:	75.0 kPa(N ₂)				
Loading Time:	0.5 min				
Needle Flush Time:	5 min				
Injection Volume:	1 mL				
Load Equilib. Time:	0 min				

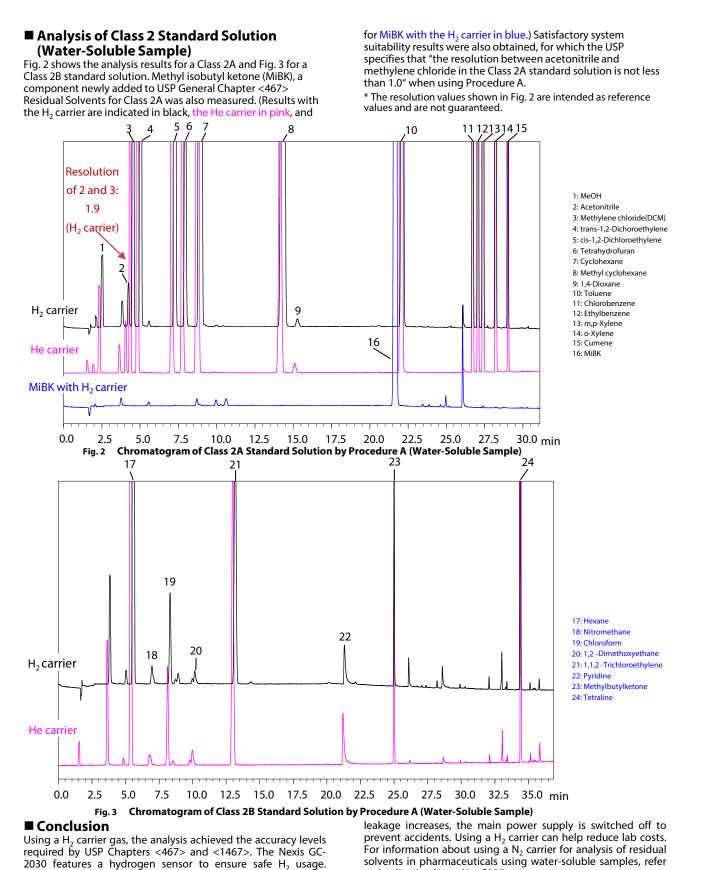
Analysis of Class 1 Standard Solution (Water-Soluble Sample)

The analysis results for Procedure A using a H_2 carrier are shown in Fig. 1. The S/N ratio and repeatability values for each peak are shown in Table 2. Table 3 shows the S/N ratio and repeatability values for each peak when using a He carrier as a reference.

Using a H₂ carrier, the results obtained with Procedure A satisfied the requirements of the USP, which specifies that "the S/N ratio for 1,1,1-trichloroethane in the Class 1 standard solution is not less than 5. "

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 min Fig. 1 Chromatogram of Class 1 Standard Solution by Procedure A (Water-Soluble Sample)

Table 2 S/N Ratio and Repeatability of Class 1 Standard Solution (Procedure A) Using H₂ Carrier


Peak No.	Compound	S/N Ratio ^{*1} (n=4)	%RSD *1 (n=4)
1	1,1-Dichloroethane	93	1.99
2	1,1,1-Trichloroethane	123	1.45
3	Carbon tetrachloride	15	3.94
4	Benzene	145	2.48
5	1,2-Dichloroethane	57	2.60

*1 The S/N ratio and relative standard deviation (%RSD) values are reference values and not intended to be guaranteed values.

Table 3 S/N Ratio and Repeatability of Class 1 Standard Solution (Procedure A) Using He Carrier

Peak No.	Compound	S/N Ratio ^{*1} (n=4)	%RSD *1 (n=4)
1	1,1-Dichloroethane	131	1.44
2	1,1,1-Trichloroethane	150	1.64
3	Carbon tetrachloride	13	7.30
4	Benzene	188	0.66
5	1,2-Dichloroethane	76	0.81

*1 The S/N ratio and relative standard deviation (%RSD) values are reference values and not intended to be guaranteed values.

Nexis is a trademark of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Hydrogen sensors detect potential leaks early. When hydrogen

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures. This publication may contain references to products that are not available in your country.

First Edition: Jun. 2021 01-00176A-EN Revision A. Mar 2023

Please contact us to check the availability of these products in your country

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu See http://www.shimadzu.com/about/trademarks/index.html for details.

to Application News No. G325.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "@". Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change . without notice.