SHIMADZU

Nozomi Maeshima¹; Kyoko Yamada¹; Yoshihiro Saito¹; Tetsuo lida²; Chigusa Ichikawa¹; Dominika Gruszecka³; Alan Owens³; Yoshiro Hiramatsu³; Manami Kobayashi¹ 1) SHIMADZU Corporation, Kawasaki, Japan; 2) SHIMADZU Corporation, Kyoto, Japan; 3) Shimadzu Scientific Instruments, Columbia, MD

. Introduction

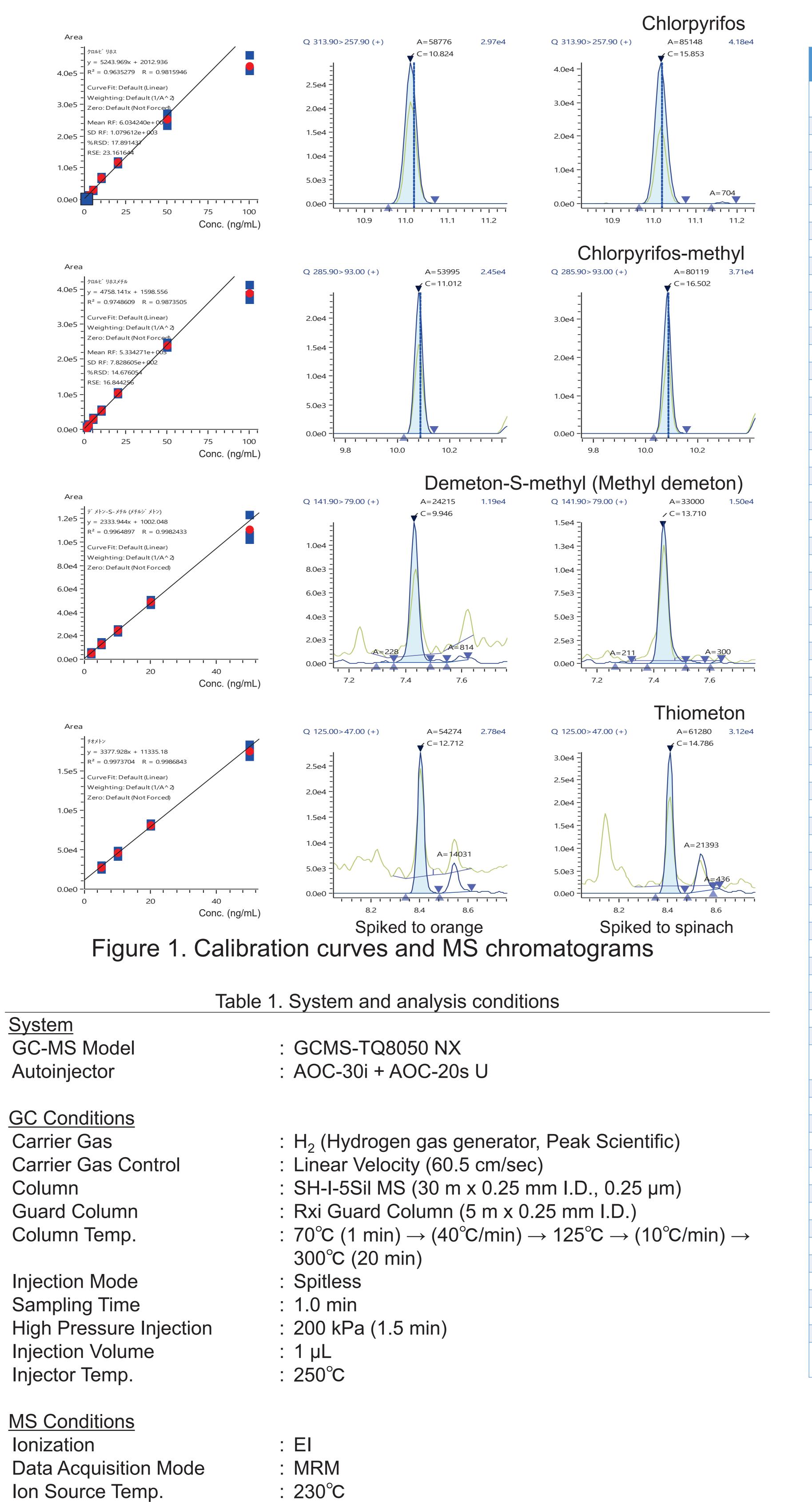
In GC-MS/MS analysis, helium gas is generally used as the carrier gas; however, in recent years the shortage of supply and the soaring price of helium gas have resulted in a need to pivot to other options. To address this problem, hydrogen gas is being used as an alternative carrier gas. The characteristics of hydrogen gas are different from those of helium gas, however, and methods using helium gas must be adjusted to appropriate conditions for hydrogen gas. We have developed a quantitative analysis method for 216 pesticides with GC-MS/MS using hydrogen gas. Using this method, good recovery results were obtained in food samples.

2. Methods

2-1. Samples and reagents

Oranges and spinach were bought at a grocery store and the whole fruit, including the peel, was freeze-ground. Freeze crushing was performed using Frestent FST-4000 (AiSTI SCIENCE).

Freeze-ground samples were extracted and cleaned up using the QuEChERS method. The Q-sep QuEChERS extraction salt kit (Restek, AOAC 2007.01, P/N: 25852) was used for extraction and the Q-sep QuEChERS extraction solution purification dSEP (Restek, AOAC 2007.01, P/N: 26222 for orange, P/N: 26219 for spinach) was used for cleanup.


2-2. Extraction and purification

15 g of frozen ground sample were weighed into a 50 mL tube and 15 mL of acetic acid/acetonitrile solution (1:100, v/v) were added. Next, Q-sep QuEChERS extract salt was added and immediately shaken vigorously by hand for 1 minute. Centrifugation was performed at 3,000 rpm for 5 minutes at room temperature. Acetonitrile layer was transferred to a dSEP tube containing a purification filler and shaken vigorously by hand for 1 minute. Supernatant was collected by centrifugation at 3,000 rpm for 5 minutes at room temperature.

5 mL of cleaned-up sample solution was concentrated to 0.5 mL or less using a nitrogen gas blowdown concentrator TurboVap LV (Biotage), and then adjusted to 5 mL with an acetone/hexane solution (1:1, v/v)^{*1} before GC-MS/MS analysis. Pesticide standard solutions were spiked at a final concentration of 10 ng/mL to verify recovery.

*1 Since precipitation occurred in the sample solution treated with orange, the sample was centrifuged at 3,000 rpm for 5 minutes at room temperature, and the supernatant was used as the sample for analysis.

Simultaneous Analysis of Pesticides in Food With GC-MS/MS Using Hydrogen Carrier Gas

: 250°C

: 150 µA

Interface Temp.

Emission Current

Compound
1,1-Dichloro-2,2-bis(4-
ethylphenyl)ethane 2,6-Dichlorobenzamide
2-Phenylphenol Acetochlor
Alachlor
Allidochlor
Ametryn Anilofos
Atrazine
Azaconazole Benfuresate
Bifenazate
Bifenthrin Biphenyl
Bitertanol-1
Bitertanol-2 Bromobutide
Bromophos
Bromophos-ethyl Bromopropylate
Bromuconazole-1
Bromuconazole-2 Bupirimate
Buprofezin
Butachlor
Butylate Cadusafos
Carbophenothion
Carboxin Chlorbenside
Chlorfenson
(E)-Chlorfenvinphos (Z)-Chlorfenvinphos
Chlormephos
Chlorobenzilate Chloroneb
Chlorpropham
Chlorpyrifos
Chlorpyrifos-methyl Chlorthal-dimethyl
Chlorthiophos-1
Chlorthiophos-2 Chlorthiophos-3
Cinmethylin
Clomazone Clomeprop
Crimidine
Cyanofenphos Cyanophos
Cyhalofop-butyl
Cyproconazole-1
Cyproconazole-2 Cyprodinil
DCIP Demosters Organithe d (Mastherd
Demeton-S-methyl (Methyl demeton)
Di-allate-1
Di-allate-2 Diazinon
Dichlobenil
Dichlofenthion Diclobutrazol
Diclocymet-1
Diclocymet-2
Dicrotophos Diethofencarb
Difenoconazole-1
Difenoconazole-2 Diflufenican
Dimepiperate
Dimethametryn Dimethenamid
(Dimethenamid-P)

des

Recovery rat	te (%, n=3)	
Orange	Spinach	
Orange	opinacii	
118.6	120.6	
95.2	98.9	
74.6	96.3	
83.4	102.6	
97.0	122.4	
93.0	103.0	
87.0	102.0	
90.9	129.6	
112.5	113.7	
72.4	114.4	
58.7	83.3	
78.8	165.9	
89.6	111.6	
80.6	76.7	
58.0	102.8	
67.9	116.0	
81.6	98.9	
109.4	121.7	
102.4	98.8	
109.8	157.3	
84.2	132.7	
116.6	186.4	
57.6	88.0	
74.9	90.8	
38.6	92.0	
104.9	87.2	
113.8	108.5	
102.3	120.9	
68.1	88.5	
88.3	99.6	
93.3	124.5	
101.3	135.8	
84.9	141.0	
113.6	119.0	
116.4	161.2	
63.7	80.7	
106.4	108.7	
96.1	122.3	
109.1	130.4	
79.9	99.2	
56.8	77.2	
92.7	116.4	
96.6	106.2	
93.3	85.0	
117.6	120.9	
69.9	107.8	
69.5	92.6	
104.2	139.9	
73.8	92.5	
110.5	195.2	
77.0	102.8	
77.3	103.2	
73.5	94.6	
81.2	85.7	
100.4	125.2	
100.4	135.3	
112.0	113.5	
114.2	96.3	
85.3	98.8	
75.0	92.2	
90.4	101.8	
72.5	110.0	
50.0	88.5	
58.8	87.9	
100.7	117.5	
100.7		
	133.1	
44.2	106.1	
46.6	94.6	
90.2	132.1	
92.6	105.4	
77.5	82.2	
86.7	104.8	
00.7	104.0	

le 2. Recovery rate	e of 216	pesticid
Compound -	Recovery ra Orange	te (%, n=3) Spinach
Dimethomorph-1	35.9	84.1
Dimethomorph-2	36.6	78.3
(E)-Dimethylvinphos	112.2	188.2
(Z)-Dimethylvinphos	120.0	183.5
Diniconazole	73.2	103.3
Dioxabenzofos (Salithion)	105.9	120.8
Dioxathion	41.3	93.7
Diphenamid	56.8	83.1
Diphenylamine	61.9	80.8
Disulfoton	100.2	108.3
Dithiopyr	73.2	90.9
Epoxiconazole	59.7	105.3
EPTC	106.0	95.5
Esprocarb	95.9	101.7
Ethion	100.2	112.2
Ethofumesate	56.0	86.9
Ethoprophos	137.6	97.4
Etobenzanid	76.6	134.2
Etofenprox	58.0	78.8
Etoxazole	76.1	132.7
Etrimfos	91.5	110.3
Fenamidone	57.3	119.1
Fenamiphos	79.0	141.9
Fenarimol	69.4	96.0
Fenbuconazole	51.6	115.4
Fenchlorphos	104.7	112.9
Fenitrothion	115.4	177.7
Fenothiocarb	62.8	89.3
Fenoxycarb	75.8	109.4
Fenpropimorph	95.1	85.3
Fensulfothion	68.7	93.3
Fenthion	93.5	132.7
Ferimzone	56.1	111.1
Flamprop-methyl	90.1	105.7
Fludioxonil	-288.6	110.5
Fluridone	41.9	94.1
Flusilazole	75.5	134.4
Flusilazole metabolite	89.9	66.1
Flutolanil	64.8	94.4
Flutriafol	83.6	120.8
Fonofos	96.7	108.9
Furametpyr	59.6	101.7
Furametpyr metabolite	48.4	85.3
Furilazole	115.7	136.3
Hexaconazole	79.7	92.6
Hexazinone	50.4	93.6
Indanofan	65.9	119.7
Iprobenfos	71.1	96.5
Isazofos	91.9	106.3
Isofenphos	88.1	110.6
Isofenphos oxon	119.8	198.3
Isoprothiolane	87.8	96.9
MCPB-ethyl	76.7	89.9
Mefenacet	69.7	118.7
Mepronil	70.9	96.2
Metalaxyl (Mefenoxam)	51.1	98.6
Methacrifos	82.0	112.9
Methidathion	93.4	140.1
Methoprene	111.3	122.6
Metolachlor (S-Metolachlor)	82.4	109.8
(E)-Metominostrobin	79.9	110.6
(Z)-Metominostrobin	64.6	118.0
Metribuzin	95.3	146.8
Mevinphos-1	91.2	144.2
Mevinphos-2	91.2	144.2
Molinate	85.2	85.2
Monocrotophos	85.1	161.6
Myclobutanil	67.6	94.0
Napropamide	73.1	96.8
Nereistoxin	130.0	117.7
Norflurazon	70.7	94.6
Oxadiazon	79.2	93.3
Oxadixyl	53.7	98.1
Oxpoconazole	45.5	111.0

	Recovery ra	te (% n=3)
Compound	Orange	Spinach
Paclobutrazol	69.5	113.8
Penconazole	73.2	83.8
Permethrin-1 Permethrin-2	<u> </u>	147.7 99.8
Phenothrin-1	116.8	185.5
Phenothrin-2	134.1	136.7
Phenthoate	95.1	142.6
Phorate	109.3	114.3
Picolinafen Piperonyl butoxide	63.1 62.1	90.1 88.7
Piperophos	54.0	99.5
Pirimiphos-methyl	92.8	123.0
Pretilachlor	116.5	132.6
Procymidone Declaratione 1	61.3	86.7
Prohydrojasmon-1 Prohydrojasmon-2	90.6 75.7	84.6 79.9
Prometryn	85.3	97.9
Propachlor	58.5	86.4
Propanil	85.6	105.7
Propaphos	72.1	110.3
Propazine Propiconazole-1	109.2 82.3	108.7 93.4
Propiconazole-2	64.5	101.0
Propyzamide	85.9	116.3
Pyributicarb	92.4	115.3
Pyridaben	74.0	95.8
(E)-Pyrifenox	68.7	109.5
(Z)-Pyrifenox Pyrimethanil	64.3 74.3	87.2 87.9
Pyrimidifen	74.0	104.6
(E)-Pyriminobac-methyl	60.8	102.6
(Z)-Pyriminobac-methyl	65.0	110.7
Pyriproxyfen	76.5	98.7
Pyroquilon Quinalphos	53.4 62.0	81.6 84.7
Quinoclamine	102.5	237.0
Quinoxyfen	74.9	88.1
Resmethrin-1	88.5	9.6
Resmethrin-2	73.5	92.1
(Bioresmethrin) Silafluofen	66.6	86.0
Simazine	86.4	89.9
Simeconazole	89.0	133.1
Simetryn	77.3	109.5
Spiroxamine-1	85.1	89.4
Spiroxamine-2 Sulfotep	75.9 102.1	77.8 118.9
Sulprofos	99.6	129.0
Tebuconazole	61.2	97.9
Tebufenpyrad	65.0	93.7
Tebupirimfos	100.7	100.4
Tefluthrin Terbacil	84.4 113.1	87.8 172.2
Terbufos	95.8	97.6
Terbutryn	81.3	103.5
Tetraconazole	73.8	115.1
Tetradifon	114.7	152.1
Thenylchlor Thiabendazole	62.3 -842.7	92.5 117.3
Thifluzamide	81.5	134.6
Thiobencarb	98.9	124.1
Thiocyclam	124.8	114.8
Thiometon Tololofos mothyl	119.7	127.3
Tolclofos-methyl Tolfenpyrad	79.2 45.4	103.8 86.3
Triadimefon	88.6	106.5
Triadimenol-1	71.4	93.3
Triadimenol-2	78.7	106.9
Tri-allate	116.4	110.0
Triazophos Uniconazole (Uniconazole-	76.8	138.0
P)	75.0	122.5
Vinclozolin	84.0	108.1

$\mathbf{M032}$

2-3. Equipment

Quantification was performed with a triple quadrupole mass spectrometer GCMS-TQTM8050 NX equipped with AOC-30i and AOC-20s U as injectors (Shimadzu Corporation). The column was the same size as that commonly used when helium gas is used. The system configuration is shown table 1. This system enables accurate simultaneous analysis of multiple components. LabSolutions InsightTM, a quantitative analysis support software optimized for multi-analyte and multi-component analysis, was used for the analysis.

3. Results

Recovery tests were conducted in triplicate at 10 ng/mL to verify the recovery rates and repeatability. For calculation of recovery rate, the peak area values of compounds were compared with the standard solution. Table 2 shows the recovery rate of pesticides spiked into orange and spinach. The recovery rate was within 70 to 120% for 151 compounds (70%) in orange and 159 in spinach (74%). Also, there were 173 compounds in the reference standard, 144 in orange, and 182 in spinach that had a repeatability (%RSD) of 10% or less in 3 replicates (data not shown in the table).

In addition, using standard solutions, calibration curves could be generated at 1 to 100 ng/mL for 152 compounds (70%) and at 2 to 100 ng/mL for 28 compounds (13%). The calibration curves and MS chromatograms of some compounds are shown in figure 1. The middle column shows MS chromatograms of samples spiked into orange and the right column shows MS chromatograms of samples spiked into spinach.

Figure 2. GCMS-TQ8050 NX

4. Conclusions

- \succ Using hydrogen gas as an alternative carrier gas, we simultaneously analyzed 216 food-borne agrochemicals using an ultra-sensitive triple-quadrupole mass spectrometer GCMS-TQ8050 NX combined with AOC-30i and AOC-20s U as injectors.
- \triangleright Good recovery rate within 70 ~ 120% were obtained for 70% to 74% of the compounds. This system enables simultaneous analysis of multiple pesticides with high sensitivity and accuracy.